

GLAUCOLIDE-LIKE SESQUITERPENE LACTONES FROM ARTEMISIA JUDAICA

S. M. KHAFAGY, A. A. SEIF EL-DIN, J. JAKUPOVIC,* C. ZDERO* and F. BOHLMANN*

Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt, *Institute of Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, FRG.

(Received 29 June 1987)

Key Word Index—*Artemisia judaica*, Compositae, sesquiterpene lactones, eudesmanolides, germacranolides, seco-eudesmanolides, glaucolide-like lactones

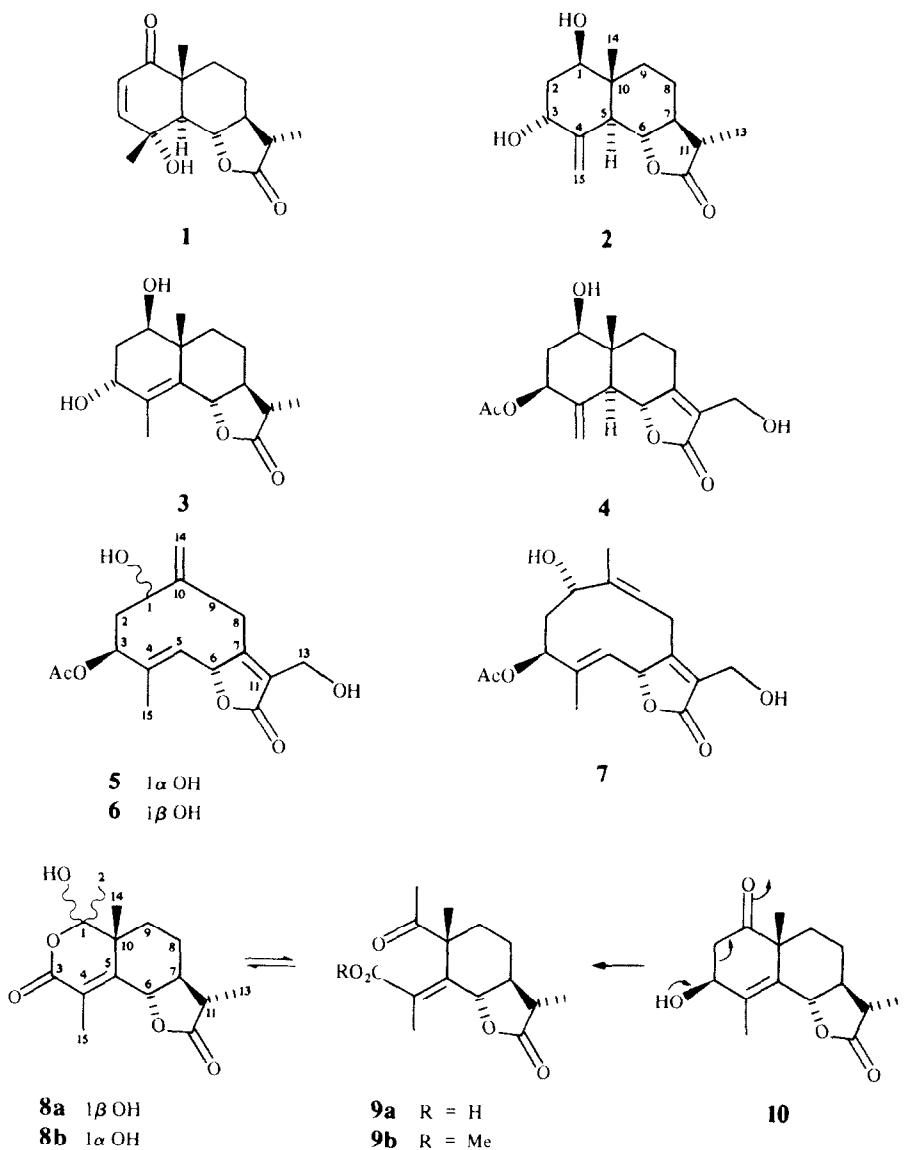
Abstract—The aerial parts of *Artemisia judaica* afforded, in addition to known compounds, eight new sesquiterpene lactones, two eudesmanolides, two seco-eudesmanolides and four glaucolide-like lactones. The structures were elucidated by high field NMR techniques.

INTRODUCTION

Artemisia judaica L. (arabic name: Shih-Balady) is widespread in Egypt in the coastal areas but also in the desert near the Nile and in the Sinai peninsula. As this species has long been used as a medical herb it has been studied chemically by different groups. In addition to eudesmanolides [1-4] some monoterpenes [4, 5] and some aromatic compounds [4, 5] are reported. The main constituent is vulgarin (=judaicin) (1) [2-4]. A reinvestigation of the polar parts of the extract from aerial parts gave several new sesquiterpene lactones. In addition to vulgarin the eudesmanolides 2 and 3, the glaucolides 4-7 and the epimeric seco derivatives 8a/b were present.

RESULTS AND DISCUSSION

The structure of 2 could be easily deduced from the ¹H NMR spectrum (Table 1) which was close to that of erivanin [6]. However, the splitting of H-1 indicated a changed configuration. The relative position of the equatorial hydroxy group followed from the results of spin decoupling in deuteriobenzene which allowed the assignment of all signals. Similarly, the ¹H NMR spectrum of 3 (Table 1) showed that an isomer of isoerivanin [7] was present. Again the 1-hydroxy group was equatorial as followed from the couplings.


The ¹H NMR spectral data of 4 (Table 1) differed from those of 2 and 3. Especially, the H-13 doublet was missing and the signal of H-6 was a doublet (δ 5.02 br d). The chemical shift of the latter and a long range coupling with a broadened singlet at δ 4.38 indicated the presence of a glaucolide type lactone with a 7,11-double bond and an oxygen function at C-13. The remaining signals were assigned by spin decoupling and the observed couplings of H-1 and H-3 established the stereochemistry at the corresponding carbons. Thus lactone 4 was the 13-O-desacetyl derivative of artemisia glaucolide which was isolated from *Artemisia afra* [8]. A related eudesmanolide, arbusculin D, has been reported from a further *Artemisia* species [9].

The separation of the epimeric lactones 5 and 6 was

extremely difficult and the ¹H NMR spectra were highly broadened at room temperature. However, at elevated temperature most signals could be assigned by spin decoupling (Table 1). The results clearly showed that again glaucolides were present. This was further supported by the ¹³C NMR spectra (Table 2). NOE difference spectroscopy further allowed the assignment of the configuration at C-1. Thus lactone 5 showed a NOE between H-15, H-1 (5%) and H-6 (12%) while in the case of 6 NOE's between H-1 and H-3 (5%) as well as between H-15 and H-6 (15%) were observed. Inspection of models indicated that these effects and the couplings required conformations differing in the orientation of C-14 which was below the plane in the case of 5 while C-15 was above the plane in the preferred conformations of the lactones. The ¹H NMR data of 5 and 6 were close to those of a pair of isomeric lactones [8] which, however, again were 13-O-acetates. Similarly, the ¹H NMR spectrum of 7 was close to the corresponding 13-O-acetate [8] which also could be interpreted only at elevated temperature. Surely, the precursor of the lactones 5-7 is the corresponding 1(10),4-germacadiene which was not isolated. However, the 13-O-acetate was present in *Artemisia afra* [8].

The structures of the epimers 8a/b, which could not be separated, were deduced from the structure of 9b, the single methyl ester obtained by reaction of the epimers with diazomethane. Together with the molecular formula therefore the natural compounds must be the C-1 epimers 8a/b. The relative position of the oxygen functions followed from the shift differences of H-14 in the epimers which are surely due to the neighbouring hydroxy group which deshields H-14 in the main epimer 8a. Most likely they are formed by fragmentation of the hydroxy ketone 10 followed by oxidation of the resulting conjugated aldehyde leading to 9a which is in equilibrium with the epimeric pseudo acids 8a/b (Scheme 1). We have named the latter seco-isoerivanin pseudo acid.

The isolation of 4-7 from an *Artemisia* species from the Northern hemisphere surely is of interest as these lactones are very close to those from the only South African species, *A. afra*, where, however, in addition to the glaucolides guianolides were isolated [8]. Further investi-

gations may show whether these lactones are more widespread in the tribe Anthemideae. So far, in addition to *Artemisia*, such glaucolides have only been reported from a *Cotula* species [10] where, however, 8α -oxygen functions are present which otherwise are only very common in the tribe Vernonieae [11].

EXPERIMENTAL

The air-dried aerial parts (15 kg, collected from Wadi-Hof, Egypt, in March 1986, voucher deposited in the Herbarium of the University of Alexandria) were extracted with 95% EtOH at room temp. After concn HOAc was added. After 3 hr the dark green deposit was filtered and the soln was successively shaken with petrol, Et₂O, CHCl₃, EtOAc and *n*-BuOH. The bitter tasting fractions (Et₂O, CHCl₃ and EtOAc) were combined and concentrated affording 33 g extract which was separated by CC (Al₂O₃). The fractions obtained with CCl₄-CHCl₃ (9:1) gave 2.5 g crystalline judaicin (**1**). The fractions obtained with increas-

ing amounts of CHCl_3 gave 11 g crude material which was separated again by CC (Al_2O_3). With Et_2O 75 mg **2** and with $\text{CHCl}_3\text{-Et}_2\text{O}$ and $\text{CHCl}_3\text{-MeOH}$ 7 g of a mixture were obtained which gave by CC (SiO_2) with $\text{Et}_2\text{O}\text{-MeOH}$, 4, 1, a polar fraction affording by TLC (silica gel, PF 254, $\text{Et}_2\text{O}\text{-MeOH}$, 9/1) three bands (3/1-3/3). The first band gave 2 mg **2** and 3/2 10 mg **3** (R_f 0.50). The last band (3/3) was separated by HPLC (MeOH- H_2O , 1/1, always RP 18, *ca* 100 bar) affording three fractions (3/3/1 3/3/3). TLC of 3/3/1 (R_f 1.7 min) ($\text{Et}_2\text{O}\text{-CHCl}_3\text{-MeCN}$, 2/2/1, six developments) gave 4 mg **5** and 9 mg **6**. Repeated HPLC of 3/3/2 (MeOH- H_2O , 2/3) gave 3 mg **7** (R_f 5 min). Fraction 3/3/3 (R_f 3.0 min) contained 9 mg **4**. The less polar CC fraction gave by TLC (Et_2O) 3 mg **8a/b** (R_f 0.65) which could not be separated by TLC or HPLC (*ca* 3/2).

1-epi-Eruvanin (2) Colourless crystals, mp 257–259°, MS *m/z* (rel int) 266 152 [M]⁺ (27) (calc for C₁₅H₂₂O₄ 266 152), 251 (10), 248 (19), 233 (8), 230 (8), 57 (100), [α]_D^{24°} +83 (CHCl₃, c 0.23).

1-epi-*Isoerivanin* (3) Colourless oil, IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} 3590 (OH), 1770 (γ -lactone), MS m/z (rel. int.) 266 152 [M]⁺ (36)

Table 1 ^1H NMR spectral data of 2–7, 8a/b and 9b (400 MHz, CDCl_3 , δ -values)

H	$2(\text{C}_6\text{D}_6/\text{MeOD})$	3	4	5(60°)	6(60°)	7(70°)†	8a/b(C_6D_6)	9b
1	4.02 dd	3.83 dd	3.52 br dt	4.04 br dd	4.20 br t	4.33 dd	—	—
2	2.20 ddd	1.89 m	2.2 ddd	2.20 ddd	*	2.19 ddd	1.47, 1.44 s	2.21 s
2'	1.80 ddd	1.65 q	*	*	*	1.99 ddd	—	—
3	4.29 t	4.02 br s	5.12 dd	5.32 dd	5.12 t	4.96 dd	—	—
5	2.66 dt	—	1.77 br d	4.99 br d	5.09 br d	4.97 br d	—	—
6	3.63 t	4.59 dt	5.02 br d	5.39 br d	5.44 br d	5.44 br d	3.87, 3.86 dq	4.68 dq
7	1.20 dq	1.79 dq	—	—	—	—	1.26 m	2.10 m
8	1.39 dq	1.96 dq	2.96 ddd	*	*	2.89 br t	1.50 m	1.99 m
8'	1.03 dq	1.54 dq	2.44 br dt	2.99 ddd	3.27 ddd	3.27 br dd	2.07 dq	1.80 m
9	1.16 ddd	1.33 dt	1.30 dt	*	*	5.13 dd	0.85 m	1.90 m
9'	2.03 dt	2.12 dt	2.27 ddd	2.64 br dd	*	—	1.16 m	1.60 m
11	1.73 dq	2.28 dq	—	—	—	—	1.50, 1.43 m	2.29 dq
13	1.01 d	1.25 d	4.38 br s	4.47 br s	4.42 br s	4.40 br s	0.95, 0.91 d	1.28 d
14	0.82 s	1.09 s	0.94 s	$\begin{cases} 5.17 \text{ br s} \\ 4.97 \text{ br s} \end{cases}$	$\begin{cases} 5.24 \text{ br s} \\ 4.92 \text{ br s} \end{cases}$	1.76 br s	1.41, 1.13 s	1.52 s
15	$\begin{cases} 5.09 \text{ t} \\ 4.93 \text{ t} \end{cases}$	2.01 d	$\begin{cases} 5.26 \text{ br s} \\ 5.13 \text{ br s} \end{cases}$	1.87 br s	1.86 br s	1.92 br s	2.14, 2.11 d	2.12 d
OAc	—	—	2.19 s	2.08 s	2.07 s	2.04 s	—	—

*overlapped multiplets, † $\text{CDCl}_3\text{--MeOD}$, 2

J [Hz] Compound 2, 1,2 α =4.5, 1,2 β =11.5, 2 α ,2 β =13, 2 α ,3=2 β ,3=3, 5,6=6,7=10.5, 5,15=5,15'=15,15'~1, 7,8 β =7,11=8 α ,8 β =8 β ,9 α ~12, 7,8 α =8 α ,9 α =8 α ,9 β =3, 9 α ,9 β =13, 11,13=7, compound 3: 1,2 α =6, 1,2 β =10, 3,6=6,15=15, 6,7=7,8 β =7,11=11, 7,8 α =8 α ,9 α =8 α ,9 β =9 β ,9 β ~3, 8 α ,8 β =9 α ,9 β =13, 11,13=7; Compound 4: 1,2 α =1, OH=2 α ,3=4, 1,2 β =2 α ,2 β =2 β ,3=5,6=11, 8 α ,8 β =8 β ,9 α =14; 8 α ,9 α =4, 8 α ,9 β =1.5, 8 β ,9 β =5.5, 9 α ,9 β =13, compound 5: 1,2 α =4, 1,2 β =10, 2 α ,2 β =13, 2 α ,3=8.5, 2 β ,3=6.5, 5,6=10, 8',9=2.5, 8',9'=7, 8,8'=14, 9,9'=14, compound 6: 1,2=1,2'=7.5, 2,3=2',3=7, 5,6=10, 8,8'=15, 8',9=4.5, 8',9'=11.5, compound 7: 1,2 α =6, 1,2 β =10.5, 2 α ,2 β =8 α ,8 β =13; 2 α ,3=5.6=8 α ,9=11, 2 β ,3=5, 8 β ,9=3, compounds 8a/b: 6,7=11, 6,15=17, 7,11=12, 11,13=7; compound 9b: 6,7=11, 6,15=17, 7,11=12, 11,13=7

Table 2 ^{13}C NMR spectral data of 5 and 6 (100.6 MHz, CDCl_3 , δ -values)

C	5*	6*
1	75.2 d	75.2 d
2	36.6 t	37.0 t
3	77.2 d	77.2 d
4	141.3 s	137.5 s
5	125.2 d	123.7 d
6	79.7 d	79.5 d
7	164.2 s	163.7 s
8	23.8 t	24.2 t
9	33.9 t	26.2 t
10	147.9 s	149.4 s
11	127.1 s	127.1 s
12	173.8 s	173.6 s
13	55.1 t	54.7 t
14	113.1 t	114.9 t
15	11.7 q	11.4 q
OAc	169.9 s	169.8 s
	21.1 q	21.1 q

*Some signals may be interchangeable

(calc for $\text{C}_{15}\text{H}_{22}\text{O}_4$, 266.152), 251 (18), 248 (54), 233 (38), 55 (100), $[\alpha]_D^{240}+39$ (CHCl_3 , c 0.93)

13-O-Desacetyl eudesma-afraglaucolide (4) Colourless oil, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$: 3580 (OH), 1740 (γ -lactone, OAc), MS m/z (rel

int) 322.142 [$\text{M}]^+$ (9) (calc for $\text{C}_{17}\text{H}_{22}\text{O}_6$, 322.142), 280 (28), 279 (36), 262 (24), 244 (42), 216 (50), 60 (100), $[\alpha]_D^{240}+82$ (CHCl_3 , c 0.88)

13-O-Desacetyl-1 α -hydroxy-afraglaucolide (5) Colourless oil, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$ 3580 (OH), 1740 (γ -lactone, OAc), MS m/z (rel int) 322.142 [$\text{M}]^+$ (0.2) (calc for $\text{C}_{17}\text{H}_{22}\text{O}_6$, 322.142), 280 (0.6), 262 (1.3), 244 (5), 216 (4), 201 (3), 60 (100)

13-O-Desacetyl-1 β -hydroxy-afraglaucolide (6) Colourless oil, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$ 3580 (OH), 1740 (γ -lactone, OAc), MS m/z (rel int) 322.142 [$\text{M}]^+$ (0.4) (calc for $\text{C}_{17}\text{H}_{22}\text{O}_6$, 322.142), 280 (1.5), 262 (7.5), 244 (24), 216 (17), 60 (100), $[\alpha]_D^{240}-9$ (CHCl_3 , c 0.85)

13-O-Desacetyl-1 β -hydroxyisoofraglaucolide (7) Colourless crystals, mp 207°, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$ 3590 (OH), 1750 (γ -lactone, OAc), MS m/z (rel int) 322.142 [$\text{M}]^+$ (3), 280 (4.5), 262 (7.7), 244 (20), 216 (11), 57 (100), $[\alpha]_D^{240}+52$ (CHCl_3 , c 0.25)

Seco-isoerivanin pseudo acid (8a/b) Colourless oil, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$ 3600 (OH), 1770 (γ -lactone), 1720 (CO_2R), MS m/z (rel int) 280.131 [$\text{M}]^+$ (6) (calc for $\text{C}_{15}\text{H}_{20}\text{O}_5$, 280.131), 265 (84), 262 (6), 237 (40), 163 (91), 139 (44), 98 (100). To 3 mg 8a/b in 2 ml Et_2O excess of CH_2N_2 was added. After 2 min evaporation and TLC ($\text{CHCl}_3\text{--C}_6\text{H}_6\text{--Et}_2\text{O}$, 2:2:1) gave 1.5 mg 9b, colourless oil, $\text{IR } v_{\text{max}}^{\text{CHCl}_3} \text{ cm}^{-1}$ 1770 (γ -lactone), 1720 (CO_2R , CO), MS m/z (rel int) 294.157 [$\text{M}]^+$ (5) (calc for $\text{C}_{16}\text{H}_{22}\text{O}_5$, 294.157), 251 (24), 220 (18), 192 (25), 57 (100)

REFERENCES

- 1 Saber, A. H. and Khafagy, S. M. (1958) *Pharm Soc Egypt Sci Ed* **40**, 37 and 91
- 2 Saber, A. H., Abou-Shady, H. and Et Antably, M. S. (1964) *Bull Fac Pharm Cairo Univ* **3**, 119

3. Kelsey, R. G. and Shafizadeh, F. (1979). *Phytochemistry* **18**, 1591
4. Metwally, M. A., Jakupovic, J., Youns, M. I. and Bohlmann, F. (1985). *Phytochemistry* **24**, 1103
5. Zalkow, L. H., Gordon, M. M., Dickinson, C. and Gelbaum, L. T. (1980). *Planta Med.* **29**, 265
6. Evstratova, R. I., Sheichenko, V. I., Ban'kovskii, A. I. and Rybalko, K. S. (1969). *Khim. Prir. Soedin.* **5**, 239
7. Samek, Z., Holub, M., Herout, V., Blasik, E. and Drozdz, B. (1979). *Coll. Czech. Chem. Commun.* **44**, 1468.
8. Jakupovic, J., Klemeyer, H., Bohlmann, F. and Graven, F. H. (1988). *Phytochemistry* **27**, 1129
9. Irwin, M. A. and Gaussman, T. A. (1973). *Phytochemistry* **12**, 853
10. Metwally, M. A., El-Dahmy, S., Jakupovic, J., Bohlmann, F., Dawidar, A. M. and Metwally, S. A. (1986). *Phytochemistry* **25**, 255
11. Seaman, E. C. (1982). *Bot. Rev.* **48**, 190.